ae1c03984_si_001.pdf (1.46 MB)
Download fileHeteroatom Doping-Induced Defected Co3O4 Electrode for High-Performance Lithium Oxygen Battery
journal contribution
posted on 2022-03-07, 14:09 authored by Peng Zhang, Zhongxiao Wang, Peng Wang, Xiaobin Hui, Danyang Zhao, Zhiwei Zhang, Longwei YinDevelopment of electrocatalysts
with high activity and stability
is crucial for advanced lithium oxygen batteries due to their sluggish
reaction kinetics and undesirable parasitic reactions. Herein, we
demonstrate that heteroatom doping is a feasible strategy to trigger
oxygen vacancies, and remarkably enhance the conductivity and catalytic
activity of the Co3O4 electrocatalyst. The optimized
Co3O4 cathode with abundant oxygen vacancies
regulates the geometric morphology of the discharge product Li2O2, which accelerates the oxygen reduction/evolution
reaction kinetics notably and lowers the redox overpotential. Density
functional theory calculations reveal that intrinsic LiO2-adsorption ability on the Co3O4 surface is
dramatically strengthened after heteroatom doping, thus fundamentally
modulating the growth route of Li2O2 and suppressing
the parasitic reactions caused by LiO2. In particular,
a phosphorus-doped Co3O4 cathode exhibits a
decreased polarization potential (1.2 V), large initial discharge
capacity (7690 mAh g–1 at 100 mA g–1), and good cyclability (90 cycles at 100 mA g–1). This work provides insight into the vital role of heteroatom doping
and oxygen vacancies in tailoring the morphology of Li2O2 and suppressing side reactions, and provides inspiration
for cathode catalyst design in lithium oxygen batteries.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
undesirable parasitic reactionsthus fundamentally modulatingsluggish reaction kineticsparasitic reactions causeddecreased polarization potentialwork provides insightlithium oxygen batteries4 sub3 sub2 subtrigger oxygen vacanciessuppressing side reactionsinduced defected codischarge product licathode catalyst design7690 mah goxygen vacanciesprovides inspirationoxygen reductionvital roleremarkably enhanceredox overpotentialoptimized coheteroatom dopinggrowth routegood cyclabilityfeasible strategydramatically strengtheneddoped cocathode exhibitscatalytic activity90 cycles