American Chemical Society
jz1c03265_si_001.pdf (998.23 kB)

H‑Type-like Aggregation-Accelerated Singlet Fission Process in Dipyrrolonaphthyridinedione Thin Film: The Role of Charge Transfer/Excimer Mixed Intermediate State

Download (998.23 kB)
journal contribution
posted on 2021-12-21, 15:13 authored by Long Wang, Wanlin Cai, Jing Sun, Yuling Wu, Bin Zhang, Xiangbin Tian, Shaoting Guo, WanZhen Liang, Hongbing Fu, Jiannian Yao
Through the combination of transient spectroscopy and theoretical simulations, an accelerated singlet fission (SF) process was evidently observed in the strongly coupled H-type-like aggregation thin films of a dipyrrolonaphthyridinedione skeleton. Results elucidate that in this H-type-like aggregation, the substantially stabilized charge transfer (CT) state is close in energy with singlet and excimer states, resulting in a CT/excimer mixed state, which could drive excited-state population escaping from excimer trap and promote an ultrafast and highly efficient SF process. Our results not only enrich the limited capacity of SF materials but also contribute to an in-depth understanding of SF dynamics in H-type aggregation, which is of fundamental importance for designing new SF sensitizers and implementing practical SF applications.