posted on 2016-02-05, 12:04authored byXue Zhi Zhao, Steven
J. Smith, Daniel P. Maskell, Mathieu Metifiot, Valerie E. Pye, Katherine Fesen, Christophe Marchand, Yves Pommier, Peter Cherepanov, Stephen
H. Hughes, Terrence R. Burke
HIV
integrase (IN) strand transfer inhibitors (INSTIs) are among
the newest anti-AIDS drugs; however, mutant forms of IN can confer
resistance. We developed noncytotoxic naphthyridine-containing INSTIs
that retain low nanomolar IC50 values against HIV-1 variants
harboring all of the major INSTI-resistant mutations. We found by
analyzing crystal structures of inhibitors bound to the IN from the
prototype foamy virus (PFV) that the most successful inhibitors show
striking mimicry of the bound viral DNA prior to 3′-processing
and the bound host DNA prior to strand transfer. Using this concept
of “bi-substrate mimicry,” we developed a new broadly
effective inhibitor that not only mimics aspects of both the bound
target and viral DNA but also more completely fills the space they
would normally occupy. Maximizing shape complementarity and recapitulating
structural components encompassing both of the IN DNA substrates could
serve as a guiding principle for the development of new INSTIs.