jp104620n_si_001.doc (556.5 kB)

Growth and Surface Structure of Zinc Oxide Layers on a Pd(111) Surface

Download (556.5 kB)
journal contribution
posted on 16.09.2010, 00:00 by G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach, S. Surnev, F. P. Netzer
The growth and geometric structure of ultrathin zinc oxide films on Pd(111) has been studied by scanning tunneling microscopy, low-energy electron diffraction, and density functional theory calculations. For sub-monolayer coverages, depending on the oxygen pressure, two well-ordered zinc oxide phases with (4 × 4) and (6 × 6) coincidence structures form, which are attributed to H-terminated Zn6O5 and graphite-like Zn6O6 layers, respectively. The (6 × 6) phase exhibits a pronounced oxygen pressure dependence: at low p(O2) a well-ordered (6 × 6) two-dimensional array of O vacancies develops, yielding a layer with a formal Zn25O24 stoichiometry, while at high p(O2) the Zn6O6 monolayer transforms into bilayer islands. For oxide coverages up to 4 monolayers the graphite-like Zn6O6 structure is thermodynamically the most stable phase over a large range of oxygen chemical potentials, before it converges to the bulk-type wurtzite structure. Under oxygen-poor conditions a compressed overlayer of Zn adatoms can be stabilized on top of the Zn6O6 structure.

History