American Chemical Society
Browse
am1c03496_si_001.pdf (773.05 kB)

Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly

Download (773.05 kB)
journal contribution
posted on 2021-05-27, 15:03 authored by Niloofar Alipoormazandarani, Tobias Benselfelt, Luyao Wang, Xiaoju Wang, Chunlin Xu, Lars Wågberg, Stefan Willför, Pedram Fatehi
Lignin is the richest source of renewable aromatics and has immense potential for replacing synthetic chemicals. The limited functionality of lignin is, however, challenging for its potential use, which motivates research for creating advanced functional lignin-derived materials. Here, we present an aqueous-based acid precipitation method for preparing functional lignin nanoparticles (LNPs) from carboxy­methylated or carboxy­pentylated lignin. We observe that the longer grafted side chains of carboxy­pentylated lignin allow for the formation of larger LNPs. The functional nanoparticles have high tolerance against salt and aging time and well-controlled size distribution with Rh ≤ 60 nm over a pH range of 5–11. We further investigate the layer-by-layer (LbL) assembly of the LNPs and poly­(allylamine hydrochloride) (PAH) using a stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). Results demonstrate that LNPs made of carboxy­pentylated lignin (i.e., PLNPs with the adsorbed mass of 3.02 mg/m2) form a more packed and thicker adlayer onto the PAH surface compared to those made of carboxy­methylated lignin (i.e., CLNPs with the adsorbed mass of 2.51 mg/m2). The theoretical flux, J, and initial rate of adsorption, (dΓ/dt)0, analyses confirm that 22% of PLNPs and 20% of CLNPs arriving at the PAH surface are adsorbed. The present study provides a feasible platform for engineering LNPs with a tunable size and adsorption behavior, which can be adapted in bionanomaterial production.

History