posted on 2015-12-16, 23:07authored byVerena Paulitschke, Verena Haudek-Prinz, Johannes Griss, Walter Berger, Thomas Mohr, Hubert Pehamberger, Rainer Kunstfeld, Christopher Gerner
Drug
resistance is a major obstacle in melanoma treatment. Recognition
of specific resistance patterns, the understanding of the patho-physiology
of drug resistance, and identification of remaining options for individual
melanoma treatment would greatly improve therapeutic success. We performed
mass spectrometry-based proteome profiling of A375 melanoma cells
and HeLa cells characterized as sensitive to cisplatin in comparison
to cisplatin resistant M24met and TMFI melanoma cells. Cells were
fractionated into cytoplasm, nuclei and secretome and the proteome
profiles classified according to Gene Ontology. The cisplatin resistant
cells displayed increased expression of lysosomal as well as Ca2+ ion binding and cell adherence proteins. These findings
were confirmed using Lysotracker Red staining and cell adhesion assays
with a panel of extracellular matrix proteins. To discriminate specific
survival proteins, we selected constitutively expressed proteins of
resistant M24met cells which were found expressed upon challenging
the sensitive A375 cells. Using the CPL/MUW proteome database, the
selected lysosomal, cell adherence and survival proteins apparently
specifying resistant cells were narrowed down to 47 proteins representing
a potential resistance signature. These were tested against our proteomics
database comprising more than 200 different cell types/cell states
for its predictive power. We provide evidence that this signature
enables the automated assignment of resistance features as readout
from proteome profiles of any human cell type. Proteome profiling
and bioinformatic processing may thus support the understanding of
drug resistance mechanism, eventually guiding patient tailored therapy.