posted on 2015-12-17, 08:29authored byAndreja Majerle, Rok Gaber, Mojca Benčina, Roman Jerala
The
high mutation rate of the human immunodeficiency virus type
1 (HIV-1) virus is a major problem since it evades the function of
antibodies and chemical inhibitors. Here, we demonstrate a viral detection
strategy based on synthetic biology principles to detect a specific
viral function rather than a particular viral protein. The resistance
caused by mutations can be circumvented since the mutations that cause
the loss of function also incapacitate the virus. Many pathogens encode
proteases that are essential for their replication and that have a
defined substrate specificity. A genetically encoded sensor composed
of a fused membrane anchor, viral protease target site, and an orthogonal
transcriptional activator was engineered into a human cell line. The
HIV-1 protease released the transcriptional activator from the membrane,
thereby inducing transcription of the selected genes. The device was
still strongly activated by clinically relevant protease mutants that
are resistant to protease inhibitors. In the future, a similar principle
could be applied to detect also other pathogens and functions.