American Chemical Society
Browse
jz0c00955_si_001.pdf (20.42 MB)

Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization

Download (20.42 MB)
journal contribution
posted on 2020-07-02, 14:15 authored by Frédéric A. Perras, Muralikrishna Raju, Scott L. Carnahan, Dooman Akbarian, Adri C. T. van Duin, Aaron J. Rossini, Marek Pruski
Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR have great potential in facilitating the in silico design of DNP polarizing agents and formulations. These models must typically face a trade-off between the accuracy of a strict quantum mechanical description and the need for using realistically large spin systems, for instance, using phenomenological models. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are shown to reproduce experimental DNP enhancements quantitatively, including their MAS rate dependence, for both frozen solutions and solid materials. They also reveal the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.

History