jp9b02299_si_001.pdf (499.41 kB)
Download file

Formation of a Metallic Ferromagnetic Thin Film on Top of an FePc-Ordered Thin Film: The Chemical and Magnetic Properties of the Interface

Download (499.41 kB)
journal contribution
posted on 05.07.2019, 00:00 authored by Emilia Annese, Giovanni Di Santo, Fadi Choueikani, Edwige Otero, Philippe Ohresser
The modifications of chemical and magnetic properties of hybrid ferromagnetic/organic interfaces composed of Co (Ni) as the top layer and iron phthalocyanine, FePc, as a thin film (deposited on Cu surfaces) are studied by means of X-ray photoemission and absorption spectroscopies. The bond formation between Co (Ni) and carbon and nitrogen atoms is indicated by the presence of additional features in C 1s and N 1s core level spectra. The interaction between Co (Ni) atoms and Fe within FePc induces an overall redistribution of 3d orbital population, as shown by the decrease of the a1gb1g ratio with respect to one of the noninteracting FePc films. X-ray magnetic circular dichroism (XMCD) reveals in-plane magnetization of the Co (Ni) film on top of FePc, which appears at room temperature and in remanence for Co and Ni film thicknesses of 0.4 and 4 nm, respectively. In the case of the Co/FePc interface, we studied the magnetic response in the presence of a field of 6 T and in remanence observing the Fe XMCD intensity and line shape. The differences in XMCD spectra are related to the co-existence of two contributions to the chemical and magnetic interactions according to the distance between the molecules and the metal interface. The closest to the metal top layer chemically bind and align with its magnetization, whereas the farthest have no preferential bonding and magnetic alignment, except in the presence of a large external magnetic field. These findings are relevant to the understanding and the development of hybrid organic/inorganic spin devices.

History