American Chemical Society
es051858x_si_001.pdf (72.91 kB)

Formation of C7F15COOH (PFOA) and Other Perfluorocarboxylic Acids during the Atmospheric Oxidation of 8:2 Fluorotelomer Alcohol

Download (72.91 kB)
journal contribution
posted on 2006-02-01, 00:00 authored by T. J. Wallington, M. D. Hurley, J. Xia, D. J. Wuebbles, S. Sillman, A. Ito, J. E. Penner, D. A. Ellis, J. Martin, S. A. Mabury, O. J. Nielsen, M. P. Sulbaek Andersen
Calculations using a three-dimensional global atmospheric chemistry model (IMPACT) indicate that n-C8F17CH2CH2OH (widely used in industrial and consumer products) degrades in the atmosphere to give perfluorooctanoic acid (PFOA) and other perfluorocarboxylic acids (PFCAs). PFOA is persistent, bioaccumulative, and potentially toxic. Molar yields of PFOA depend on location and season, are in the range of 1−10%, and are of the correct order of magnitude to explain the observed levels in Arctic fauna. Fluorotelomer alcohols such as n-C8F17CH2CH2OH appear to be a significant global source of persistent bioaccumulative perfluorocarboxylic acid pollution. This is the first modeling study of the atmospheric chemistry of a fluorotelomer alcohol.