American Chemical Society
Browse
bi501159w_si_001.pdf (322.43 kB)

Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region

Download (322.43 kB)
journal contribution
posted on 2015-12-17, 06:00 authored by Koyeli Banerjee, David P. Weliky
HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated to bind to the host cell and HIV membranes, respectively. Prior to fusion, the gp41 on the virion is a trimer in noncovalent complex with larger gp120 subunits. The gp120 bind host cell receptors and move away or dissociate from gp41 which subsequently catalyzes fusion. In the present work, large gp41 ectodomain constructs were produced and biophysically and structurally characterized. One significant finding is observation of synergy between the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced fusion can be very efficient with only ∼15 gp41 per vesicle, which is comparable to the number of gp41 on a virion. Conditions are found with predominant monomer or hexamer but not trimer and these may be oligomeric states during fusion. Monomer gp41 ectodomain is hyperthermostable and has helical hairpin structure. A new HIV fusion model is presented where (1) hemifusion is catalyzed by folding of gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps are catalyzed by assembly into a hexamer with FPs in an antiparallel β sheet. There is also significant interest in the gp41 MPER because it is the epitope of several broadly neutralizing antibodies. Two of these antibodies bind our gp41 ectodomain constructs and support investigation of the gp41 ectodomain as an immunogen in HIV vaccine development.

History