bm5b01189_si_001.pdf (354.96 kB)
Download file

Folate Receptor Targeted Delivery of siRNA and Paclitaxel to Ovarian Cancer Cells via Folate Conjugated Triblock Copolymer to Overcome TLR4 Driven Chemotherapy Resistance

Download (354.96 kB)
journal contribution
posted on 11.01.2016, 00:00 authored by Steven K. Jones, Vincent Lizzio, Olivia M. Merkel
This paper focuses on the ability of a folate-decorated triblock copolymer to deliver a targeted dose of siRNA in order to overcome chemotherapy resistance which can commonly cause complications in ovarian cancer patients. The micelleplexes that are formed upon electrostatic interaction with siRNA are used to deliver siRNA in a targeted manner to SKOV-3 ovarian cancer cells that overexpress folate receptor-α (FRα). The triblock copolymer consists of polyethylenimine-graft-polycaprolactone-block-poly­(ethylene glycol) (PEI-g-PCL-b-PEG-Fol). In this work, polymers of different molecular weights of PEG, as well as different grafting degrees of the (g-PCL-b-PEG-Fol) chains to PEI, were analyzed to optimize targeted siRNA delivery. The polymers, their micelleplexes, and the in vitro performance of the latter were characterized by nuclear magnetic resonance, dynamic light scattering, transmission electron microscopy, flow cytrometry, western blot, confocal microscopy, and in luciferase assays. The different PEI-g-PCL-b-PEG-Fol conjugates showed suitable sizes below 260 nm, especially at N/P 5, which also allowed for full siRNA condensation. Furthermore, flow cytometry and Western blot analysis demonstrated that our best polymer was able to effectively deliver siRNA and that siRNA delivery resulted in efficient protein knockdown of toll-like receptor 4 (TLR4). Consequently, TLR4 knock down within SKOV-3 cells resensitized them toward paclitaxel (PTX) treatment, and apoptotic events increased. This study demonstrates that PEI-g-PCL-b-PEG-Fol conjugates are a reliable delivery system for siRNA and are able to mediate therapeutic protein knockdown within ovarian cancer cells. Additionally, this study provides further evidence to link TLR4 levels to chemotherapy resistance.

History