posted on 2019-07-31, 18:41authored byLisa Bauer, Roberto Manganaro, Birgit Zonsics, Jeroen R. P. M. Strating, Priscila El Kazzi, Moira Lorenzo Lopez, Rachel Ulferts, Clara van Hoey, Maria J. Maté, Thierry Langer, Bruno Coutard, Andrea Brancale, Frank J. M. van Kuppeveld
Enteroviruses
(family Picornaviridae) comprise a large group of
human pathogens against which no licensed antiviral therapy exists.
Drug-repurposing screens uncovered the FDA-approved drug fluoxetine
as a replication inhibitor of enterovirus B and D species. Fluoxetine
likely targets the nonstructural viral protein 2C, but detailed mode-of-action
studies are missing because structural information on 2C of fluoxetine-sensitive
enteroviruses is lacking. We here show that broad-spectrum anti-enteroviral
activity of fluoxetine is stereospecific concomitant with binding
to recombinant 2C. (S)-Fluoxetine inhibits with a
5-fold lower 50% effective concentration (EC50) than racemic
fluoxetine. Using a homology model of 2C of the fluoxetine-sensitive
enterovirus coxsackievirus B3 (CVB3) based upon a recently elucidated
structure of a fluoxetine-insensitive enterovirus, we predicted stable
binding of (S)-fluoxetine. Structure-guided mutations
disrupted binding and rendered coxsackievirus B3 (CVB3) resistant
to fluoxetine. The study provides new insights into the anti-enteroviral
mode-of-action of fluoxetine. Importantly, using only (S)-fluoxetine would allow for lower dosing in patients, thereby likely
reducing side effects.