American Chemical Society
Browse
- No file added yet -

Flash-Thermal Shock Synthesis of Single Atoms in Ambient Air

Download (3.39 MB)
journal contribution
posted on 2023-10-06, 18:34 authored by Dong-Ha Kim, Jun-Hwe Cha, Sanggyu Chong, Su-Ho Cho, Hamin Shin, Jaewan Ahn, Dogyeong Jeon, Jihan Kim, Sung-Yool Choi, Il-Doo Kim
Single-atom catalysts feature interesting catalytic activity toward applications that rely on surface reactions such as electrochemical energy storage, catalysis, and gas sensors. However, conventional synthetic approaches for such catalysts require extended periods of high-temperature annealing in vacuum systems, limiting their throughput and increasing their production cost. Herein, we report an ultrafast flash-thermal shock (FTS)-induced annealing technique (temperature > 2850 °C, <10 ms duration, and ramping/cooling rates of ∼105 K/s) that operates in an ambient-air environment to prepare single-atom-stabilized N-doped graphene. Melamine is utilized as an N-doping source to provide thermodynamically favorable metal–nitrogen bonding sites, resulting in a uniform and high-density atomic distribution of single metal atoms. To demonstrate the practical utility of the single-atom-stabilized N-doped graphene produced by the FTS method, we showcased their chemiresistive gas sensing capabilities and electrocatalytic activities. Overall, the air-ambient, ultrafast, and versatile (e.g., Co, Ni, Pt, and Co–Ni dual metal) FTS method provides a general route for high-throughput, large area, and vacuum-free manufacturing of single-atom catalysts.

History