jp5b06847_si_001.pdf (266.53 kB)
First-Principles Modeling of Ni4M (M = Co, Fe, and Mn) Alloys as Solid Oxide Fuel Cell Anode Catalyst for Methane Reforming
journal contribution
posted on 2016-01-14, 00:00 authored by Ho-Cheng Tsai, Sergey
I. Morozov, Ted H. Yu, Boris V. Merinov, William A. GoddardIn this study, we used quantum mechanics
(QM) to investigate steam
reforming of methane on Ni-alloy catalyst surfaces and to examine
the effect of anode material modifications on the catalytic processes
in a solid oxide fuel cell (SOFC). The conventional Ni anode suffers
from coking, coarsening, and sulfur poisoning because of the decomposition
of hydrocarbon fuels, Ni particle agglomeration at high operating
temperature, and impurities contained in fuels. Ni-electrode surface
modification, such as alloying Ni with other metals (e.g., Fe and
Cu), is probably the most practical and promising way of developing
SOFC anodes tolerant to coking and sulfur poisoning. According to
experimental data, Ni4Fe shows a good catalytic performance
and excellent long-term stability as an SOFC anode catalyst. We have
performed QM calculations of segregation energy for various surface
structures of five-layer Ni4M slabs (M = Co, Fe, and Mn)
and found that Ni atoms show segregation preference for the surface
layer and the most favorable Ni4M surface structure has
two M atoms in the 2nd layer and one M atom in the 3rd and in the
4th layer (the numbering starts from the bottom layer). This structure
was used for our further QM calculations of binding energies for CHx, C, and H. We find that the Ni4M(111) surfaces bind CHx species weaker
(by 1–10 kcal/mol) than pure Ni, and the binding energy of
C is always ∼10 kcal/mol lower for the Ni4M alloys
compared to pure Ni. This is consistent with improved catalytic characteristics
of certain Ni-based alloys compared to pure Ni obtained in experiment.
Reaction energy barriers for methane decomposition on the Ni4M(111) catalyst surfaces were calculated as well. On the basis of
these results, the rate-determining step for the methane decomposition
was found to be the CH → C + H reaction. Our results predict
that Ni4Fe and Ni4Mn have both better activity
and better coking resistance and can be considered as candidates for
an SOFC anode catalyst suitable for the CH4 fuel reforming.
History
Usage metrics
Categories
Keywords
methane decompositionNi atoms show segregation preferenceQM calculationsoxide fuel cellSOFC anode catalystNi 4M alloysanode material modificationsSolid Oxide Fuel Cell Anode CatalystCH 4 fuelsulfur poisoningReaction energy barriersNi 4M catalyst surfacesNi 4FeNi 4M surface structureNi particle agglomerationNi 4M surfaces bind CHx species