American Chemical Society
cs0c05363_si_001.pdf (1.65 MB)

Fate of the Molecular Ru–Phosphonate Water Oxidation Catalyst under Turnover Conditions

Download (1.65 MB)
journal contribution
posted on 2021-04-16, 14:36 authored by Nataliia Vereshchuk, Jan Holub, Marcos Gil-Sepulcre, Jordi Benet-Buchholz, Antoni Llobet
The present work uncovers the oxidative transformations of a recently reported polypyridyl phosphonate–phenoxo Ru-based water oxidation catalyst [RuIII(tPaO-κ-N2OPOC)­(py)2]2–, 22– {tPaO5– is the 3-(hydroxo-[2,2′:6′,2″-terpyridine]-6,6″-diyl)­bis­(phosphonate)}, under turnover conditions. We show how the catalyst 22– suffers from oxidative degradation during water oxidation catalysis and generates the phosphonate–carboxylate Ru complex [RuII(Hbpc)­(py)2], 3H, where bpc3– is 6′-phosphonato-[2,2′-bipyridine]-6-carboxylate. Complex 3H has been prepared by three different methods, and its oxidative transformations were also studied in detail. Under turnover conditions, complex 3H undergoes a series of transformations that can be monitored by electrochemical techniques including the generation of catalytically active molecular water oxidation catalyst intermediates and RuO2. In addition, catalytically inactive species such as [RuII(bpc-κ-N2OP)2] have also been detected.