American Chemical Society
jp405160n_si_001.pdf (805.79 kB)

Exploring the Energy Disposal Immediately After Bond-Breaking in Solution: The Wavelength-Dependent Excited State Dissociation Pathways of para-Methylthiophenol

Download (805.79 kB)
journal contribution
posted on 2013-11-21, 00:00 authored by Yuyuan Zhang, Thomas A. A. Oliver, Saptaparna Das, Anirban Roy, Michael N. R. Ashfold, Stephen E. Bradforth
A wavelength-resolved (λpump = 295, 285, 270, and 267 nm) photodissociation study of para-methylthiophenol (p-MePhSH) in ethanol solution has been performed using femtosecond transient absorption (TA) spectroscopy, and the results compared with those from studies of the corresponding photodissociation in cyclohexane solution at 270 nm. Anisotropy spectra are used to identify the electronic character of the initially populated excited state(s). S–H bond fission is found to occur via the dissociative S2(11πσ*) state, which can be populated directly, or by ultrafast nonradiative transitions from the S3(21ππ*) state, or by very efficient tunneling from the S1(11ππ*) state, depending on the excitation wavelength, in line with conclusions from previous gas-phase studies of this same molecular photodissociation (Oliver, T. A. A.; King, G. A.; Tew, D. P.; Dixon R. N.; Ashfold, M. N. R. J. Phys. Chem. A 2012, 116, 12444). p-MePhS radicals are observed on a time scale faster than the instrument response at all wavelengths, but the available time resolution affords a rare opportunity to explore the branching between different electronic states of a product (the and states of the p-MePhS radical in this case). The present study provides estimates of this branching in the products formed immediately after the first pass through the conical intersection (CI) between the S2 and S0 states. At 270 nm, for example, we identify a marked population inversion in the radical products, in contrast to the reported gas phase behavior. The finding that the contrast in branching ratio is largest between cyclohexane solution and the gas phase, with ethanol being intermediate, can be rationalized by recognizing the differing distributions of the S–H torsion angle (relative to the ring plane) in a room temperature solution compared with those in a jet-cooled molecular beam. The available time resolution also allows exploration of the electronic quenching of nascent state radicals as solvent motion encourages recrossing of the S2/S0 CI. The average separation distance, ⟨r0⟩, between the H + p-MePhS products arising in successful dissociation events is seen to increase with decreasing photolysis wavelength. This finding accords with the previous gas phase results, which determined that most of the excess energy following population of the dissociative S2 state (directly, or by ultrafast coupling from the S3 state) is released as product translation, and the expectation that ⟨r0⟩ should scale with the total kinetic energy release. The present work also confirms that geminate recombination of the H + p-MePhS products leads not just to reformation of parent p-MePhSH molecules but also to alternative adducts wherein the H atom bonds to the benzene ring. Analysis of the present data and results of high level ab initio calculations together with recent UV-IR pump–probe measurements (Murdock, D.; Harris, S. J.; Karsili, T. N. V.; Greetham, G. M.; Clark, I. P.; Towrie, M.; Orr-Ewing, A. J.; Ashfold, M. N. R. J. Phys. Chem. Lett. 2012, 3, 3715) allows identification of the likely adduct structures.