American Chemical Society
mz8b00741_si_001.pdf (2.08 MB)

Exploiting Wavelength Orthogonality for Successive Photoinduced Polymerization-Induced Self-Assembly and Photo-Crosslinking

Download (2.08 MB)
journal contribution
posted on 2018-11-05, 00:00 authored by Sihao Xu, Jonathan Yeow, Cyrille Boyer
We report a facile benchtop process for the synthesis of cross-linked polymeric nanoparticles by exploiting wavelength-selective photochemistry to perform orthogonal photoinduced polymerization-induced self-assembly (Photo-PISA) and photo-crosslinking processes. We first established that the water-soluble photocatalyst, zinc meso-tetra­(N-methyl-4-pyridyl) porphine tetrachloride (ZnTMPyP) could activate the aqueous PET-RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA). This photo-PISA process could be conducted under low energy red light (λmax = 595 nm, 10.2 mW/cm2) and without deoxygenation due to the action of the singlet oxygen quencher, biotin (vitamin B7), which allowed for the synthesis of a range of nanoparticle morphologies (spheres, worms, and vesicles) directly in 96-well plates. To perform wavelength selective nanoparticle cross-linking, we added the photoresponsive monomer, 7-[4-(trifluoromethyl)­coumarin] methacrylamide (TCMAm) as a comonomer without inhibiting the evolution of the nanoparticle morphology. Importantly, under red light, exclusive activation of the photo-PISA process occurs, with no evidence of TCMAm dimerization under these conditions. Subsequent switching to a UV source (λmax = 365 nm, 10.2 mW/cm2) resulted in rapid cross-linking of the polymer chains, allowing for retention of the nanoparticle morphology in organic solvents. This facile synthesis of cross-linked spheres, worms, and vesicles demonstrates the utility of orthogonal light-mediated chemistry for performing decoupled wavelength selective chemical processes.