am9b17516_si_001.pdf (550.14 kB)
Download file

Exploiting Giant-Pore Systems of Nanosized MIL-101 in PDMS Matrix for Facilitated Reverse-Selective Hydrocarbon Transport

Download (550.14 kB)
journal contribution
posted on 18.12.2019, 22:43 authored by Manquan Fang, Guanghui Zhang, Yuting Liu, Renjin Xiong, Wenqing Wu, Feilong Yang, Lang Liu, Jinxun Chen, Jiding Li
Membrane gas separation offers high energy efficiency, easy operation, and reduced environmental impacts for vast hydrocarbon recovery in the petrochemical industry. However, the recovery of real light hydrocarbon mixtures (e.g., olefin/nitrogen) remains challenging for lack of high-performance membranes with sufficient reverse selectivity (large molecules permeate faster) and permeability. Here, we report the incorporation of fine-tuned, giant-pore featured MIL-101 nanocrystals into rubbery polymers to fabricate hybrid membranes, which successfully exploited the giant-pore channels and large sorption volume of the MIL-101 pore system. The synthesized MIL-101/poly­(dimethylsiloxane) (PDMS) hybrid membranes demonstrated remarkably simultaneous improvement of gas permeance and separation factor for the model gas mixture propylene/nitrogen. Compared with the pristine PDMS, the propylene permeance and separation factor could be improved by more than 50% by adjusting MIL-101 loading and operating conditions. By consulting molecular simulations and gas sorption analysis, we verified that the giant-pore system of MIL-101 and the elastic PDMS chains exhibited a synergistic effect on improving both hydrocarbon solution and diffusion. Pore properties of MIL-101 contributed favorably to accelerated propylene diffusion in MIL-101 that is 236% faster than that in PDMS. In the meantime, MIL-101 reinforced the hydrocarbon solution additionally to PDMS, which further facilitated hydrocarbon transport.

History