American Chemical Society
Browse

Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation

Download (2.6 MB)
journal contribution
posted on 2022-04-07, 19:40 authored by Liangyu Zou, Qi Liu, Daoyun Zhu, Yangqiang Huang, Yu Mao, Xiao Luo, Zhiwu Liang
In this work, a novel “foaming” strategy uses sodium bicarbonate (NaHCO3) and ammonium oxalate ((NH4)2C2O4) as the foaming agent, turning biomass-derived carboxymethyl cellulose (CMC) into N-doped porous carbon. Highly active palladium nanoparticles (Pd NPs) immobilized on nitrogen-doped porous carbon (Pd@MC(2)-P) are produced through a phosphate-mediation approach. The phosphoric acid (H3PO4) becomes the key to the synthesis of highly dispersed ultrafine Pd NPs on active Pd-cluster-edge (the edge of the Pd-cluster-100 and Pd-cluster-111 surfaces). The Pd@MC(2)-P exhibits high activity for formic acid (FA) dehydrogenation with an initial TOFg of 971 h–1 at room temperature. The subsequent hydrogenation of phenol using FA as an in situ hydrogen source on Pd@MC(2)-P and the highly efficient hydrogenation of phenol to cyclohexanone reaches more than 90% selectivity and 80% conversion. Density functional theory (DFT) calculations reveal that the reduced H poisoning and more exposed (100) surface over Pd nanoparticles are the keys to the Pd nanoparticles’ high activity.

History