es7b02730_si_001.pdf (184.22 kB)

Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector

Download (184.22 kB)
journal contribution
posted on 25.10.2017, 00:00 by Mengkai Li, Wentao Li, Dong Wen, Zhimin Qiang, Ernest R. Blatchley
Turbidity is a common parameter used to assess particle concentration in water using visible light. However, the fact that particles play multiple roles (e.g., scattering, refraction, and reflection) in influencing the optical properties of aqueous suspensions complicates examinations of their effects on ultraviolet (UV) photoreactor performance. To address this issue, UV fluence rate (FR) distributions in a photoreactor containing various particle suspensions (SiO2, MgO, and TiO2) were measured using a microfluorescent silica detector (MFSD). Reflectance of solid particles, as well as transmittance and scattering properties of the suspensions were characterized at UV, visible, and infrared (IR) wavelengths. The results of these measurements indicated that the optical properties of all three particle types were similar at visible and IR wavelengths, but obvious differences were evident in the UV range. The FR results indicated that for turbidity associated with SiO2 and MgO suspensions, the weighted average FR (WAFR) increased relative to deionized water. These increases were attributed to low particle photon absorption and strong scattering. In contrast, the WAFR values decreased with increasing turbidity for TiO2 suspensions because of their high particle photon absorption and low scattering potential. The findings also indicate that measurements of scattering and transmittance at UV wavelengths can be used to quantify the effects of turbidity on UV FR distributions.

History

Exports