posted on 2005-04-06, 00:00authored byEmmanuelle Hennebicq, Geoffrey Pourtois, Gregory D. Scholes, Laura M. Herz, David M. Russell, Carlos Silva, Sepas Setayesh, Andrew C. Grimsdale, Klaus Müllen, Jean-Luc Brédas, David Beljonne
The dynamics of interchain and intrachain excitation energy transfer taking place in a
polyindenofluorene endcapped with perylene derivatives is explored by means of ultrafast spectroscopy
combined with correlated quantum-chemical calculations. The experimental data indicate faster exciton
migration in films with respect to solution as a result of the emergence of efficient channels involving hopping
between chains in close contact. These findings are supported by theoretical simulations based on an
improved Förster model. Within this model, the rates are expressed according to the Fermi golden rule on
the basis of (i) electronic couplings that take account of the detailed shape of the excited-state wave functions
(through the use of a multicentric monopole expansion) and (ii) spectral overlap factors computed from the
simulated acceptor absorption and donor emission spectra with explicit coupling to vibrations (considered
within a displaced harmonic oscillator model); inhomogeneity is taken into account by assuming a distribution
of chromophores with different conjugation lengths. The calculations predict faster intermolecular energy
transfer as a result of larger electronic matrix elements and suggest a two-step mechanism for intrachain
energy transfer with exciton hopping along the polymer backbone as the limiting step. Injecting the calculated
hopping rates into a set of master equations allows the modeling of the dynamics of exciton transport
along the polyindenofluorene chains and yields ensemble-averaged energy-transfer rates in good agreement
with experiment.