jp500939d_si_001.pdf (1 MB)
Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water
journal contribution
posted on 2015-12-17, 03:02 authored by Alejandra Ramírez, Philipp Hillebrand, Diana Stellmach, Matthias
M. May, Peter Bogdanoff, Sebastian FiechterDifferent manganese oxide phases
were prepared as thin films to
elucidate their structure–function relationship with respect
to oxygen evolution in the process of water splitting. For this purpose,
amorphous MnOx films anodically deposited
on F:SnO2/glass and annealed at different temperatures
(to improve film adherence and crystallinity) were tested in neutral
and alkaline electrolytes. Differential electrochemical mass spectroscopy
showed that the anodic current correlated well with the onset of the
expected oxygen evolution, where in 1 M KOH, the anodic current of
crystalline α-Mn2O3 films was determined
to onset at an overpotential (η) of 170 mVRHE (at J = 0.1 mA/cm2) with current densities of ca.
20 mA/cm2 at η = 570 mVRHE. Amorphous
MnOx films heated at 573 K (MnOx-573 K) were found to improve their adherence to
F:SnO2/glass substrate after heat treatment with a slight
crystallization detected by Raman spectroscopy. The onset of water
oxidation of MnOx-573 K films was identified
at η = 230 mVRHE (at J = 0.1 mA/cm2) with current densities of ca. 20 mA/cm2 at η
= 570 mVRHE (1 M KOH). The least active of the investigated
manganese oxides was Mn3O4 with an onset at
η = 290 mVRHE (at J = 0.1 mA/cm2) and current densities of ca. 10 mA/cm2 at η
= 570 mVRHE (1 M KOH). In neutral solution (1 M KPi), a
similar tendency was observed with the lowest overpotential found
for α-Mn2O3 followed by MnOx-573 K and Mn3O4. X-ray photoelectron
spectroscopy revealed that after electrochemical treatment, the surfaces
of the manganese oxide electrodes exhibited oxidation of Mn II and
Mn III toward Mn IV under oxygen evolving conditions. In the case
of α-Mn2O3 and MnOx-573 K, the manganese oxidation was found to be reversible
in KPi when switching the potential above and below the oxygen evolution
reaction (OER) threshold potential. Furthermore, scanning electron
microscopy (SEM) images displayed the presence of an amorphous phase
on top of all manganese oxide films here tested after oxygen evolution.
The results indicate that structural changes played an important role
in the catalytic activity of the manganese oxides, in addition to
oxidation states, a large variety of Mn–O bond lengths and
a high concentration of oxygen point defects. Thus, compared to Mn3O4, crystalline α-Mn2O3 and MnOx-573 K are the most efficient
catalyst for water oxidation in the manganese–oxygen system.
History
Usage metrics
Categories
Keywords
mVRHEwater oxidationoxygen point defects2OOERMn 3OWaterDifferent manganese oxide phasesmanganese oxidesOxygen Evolution Reactionmanganese oxide filmsmanganese oxide electrodesmAoxygen evolution reactionMn 3O Electrodeposited FilmsDifferential electrochemical mass spectroscopySEMAmorphous MnOx filmsMnOx films anodicallyscanning electron microscopyIIIIVII1 M KOHoxygen evolution