am6b03100_si_001.pdf (433.97 kB)

Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis

Download (433.97 kB)
journal contribution
posted on 20.04.2016, 00:00 by Chengtie Wu, Lunguo Xia, Pingping Han, Lixia Mao, Jiacheng Wang, Dong Zhai, Bing Fang, Jiang Chang, Yin Xiao
Bone tissue engineering offers a possible strategy for regenerating large bone defects, in which how to design beneficial scaffolds for accelerating bone formation remains significantly challenging. Europium, as an important rare earth element, has been used as a solid-state lighting material. However, there are few reports on whether Eu can be used for labeling bone tissue engineering scaffolds, and its biological effect on bone cells and bone tissue regeneration is unknown. In this study, we incorporated Eu into mesoporous bioactive glass (Eu-MBG) scaffolds by an in situ cotemplate method to achieve a bifunctional biomaterial with biolabeling and bone regeneration. The prepared Eu-MBG scaffolds have highly interconnective large pores (300–500 μm), a high specific surface area (140–290 m2/g), and well-ordered mesopores (5 nm) as well as uniformly distributed Eu. The incorporation of 2–5 mol % Eu into MBG scaffolds gives them a luminescent property. The in vitro degradation of Eu-MBG scaffolds has a functional effect on the change of the luminescence intensity. In addition, Eu-MBG can be used for labeling bone marrow stromal cells (BMSCs) in vitro and still presents a distinct luminescence signal in deep bone tissues in vivo to label new bone tissue via release of Eu ions. Furthermore, the incorporation of different contents of Eu (1, 2, and 5 mol %) into MBG scaffolds significantly enhances the osteogenic gene expression of BMSCs in the scaffolds. The Eu- and Si-containing ionic products released from Eu-MBG scaffolds distinctly promote the osteogenic differentiation of BMSCs. Critically sized femur defects in ovariectomized (OVX) rats are created to simulate an osteoporotic phenotype. The results show that Eu-MBG scaffolds significantly stimulate new bone formation in osteoporotic bone defects when compared to MBG scaffolds alone and Eu may be involved in the acceleration of bone regeneration in OVX rats. Our study for the first time reports that the incorporation of the rare earth element Eu into bioscaffolds has the ability to accelerate bone regeneration in vivo, and thus, the prepared Eu-MBG scaffolds possess bifunctional properties with biolabeling and bone regeneration.