American Chemical Society
Browse

Epitaxy-Induced Assembly and Enantiomeric Switching of an On-Surface Formed Dinuclear Organocobalt Complex

Download (15.69 MB)
journal contribution
posted on 2017-01-18, 00:00 authored by Raphael Hellwig, Tobias Paintner, Zhi Chen, Mario Ruben, Ari Paavo Seitsonen, Florian Klappenberger, Harald Brune, Johannes V. Barth
We report on the surface-guided synthesis of a dinuclear organocobalt complex, its self-assembly into a complex nanoarchitecture, and a single-molecule level investigation of its switching behavior. Initially, an organic layer is prepared by depositing hexakis­((trimethylsilyl)­ethynyl)-benzene under ultrahigh-vacuum conditions onto Ag(111). After Co dosage at 200 K, low-temperature scanning tunneling microscopy (STM) reveals an epitaxy-mediated organization mechanism of molecules and on-surface formed organometallic complexes. The dinuclear complexes contain two bis­(η2-alkynyl) π-tweezer motifs, each stabilizing a single Co atom and express two enantiomers due to a conformation twist. The chirality is transferred to the two-dimensional architecture, whereby its Co adatoms are located at the corners of a 3.4.6.4 rhombitrihexagonal tessellation due to the systematic arrangement and anchoring of the complexes. Extensive density functional theory simulations support our interpretation of an epitaxy-guided surface tessellation and its chiral character. Additionally, STM tip-assisted manipulation experiments on isolated dinuclear complexes reveal controlled and reversible switching between the enantiomeric states via inelastic electron processes. After activation by bias pulses, structurally modified complexes display a distinctive Kondo feature attributed to metastable Co configurations.

History