American Chemical Society
Browse
ao0c00120_si_001.pdf (872.34 kB)

Epigenetic TET-Catalyzed Oxidative Products of 5‑Methylcytosine Impede Z‑DNA Formation of CG Decamers

Download (872.34 kB)
journal contribution
posted on 2020-03-31, 13:34 authored by Vorasit Vongsutilers, Yoko Shinohara, Gota Kawai
Methylation of cytosine has been known to play a significant role in epigenetic regulation. 5-Methylcytosine was among the first base modification that was discovered for the capability to facilitate B/Z-DNA transition as observed in CG repeated tracks. A study on gene repression by Z-DNA prone sequence as in ADAM-12 has ignited our research interest for the Z-DNA role in epigenetics. Ten eleven translocation family proteins are responsible to catalyze 5-methylcytosine to produce oxidative products including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine, which each may have unique function rather than the sole purpose of 5-methylcytosine clearance. Although the Z-DNA-promoting effect of 5-methylcytosine was well established, the effect of its oxidative products on Z-DNA remain unknown. In this study, the Z-DNA-promoting effect of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine on the CG decamer model were investigated along with known Z-DNA stabilizers, 5-methylcytosine and 8-oxoguanine. Experimental results from circular dichroism (CD) and NMR indicates that all oxidative products of 5-methylcytosine hinder B/Z-DNA transition as high salt concentration suitable to stabilize and convert unmodified CG decamer to Z-DNA conformation is insufficient to facilitate the B/Z-DNA transition of CG decamer containing 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxycytosine. Molecular dynamic simulation and free energy calculation by MM-PBSA are in agreement with the experimental finding that 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine destabilize Z-DNA conformation of CG decamer, in contrast to its precursor. Investigation of Z-DNA switch-on/switch-off regulated by 5-methylcytosine and its oxidative products is a further step to elucidate the potential of epigenetic regulated via Z-DNA.

History