American Chemical Society
am3c15947_si_001.pdf (3.09 MB)

Entropy-Driven Enhancement of the Conductivity and Phase Purity of Na4Fe3(PO4)2P2O7 as the Superior Cathode in Sodium-Ion Batteries

Download (3.09 MB)
journal contribution
posted on 2024-02-03, 05:03 authored by Hongmei Dai, Yue Xu, Yue Wang, Fangyuan Cheng, Qian Wang, Chun Fang, Jiantao Han, Paul K. Chu
Na4Fe3(PO4)2(P2O7) (NFPP) is regarded as a promising cathode material for sodium-ion batteries (SIBs) owing to its low cost, easy manufacture, environmental purity, high structural stability, unique three-dimensional Na-ion diffusion channels, and appropriate working voltage. However, for NFPP, the low conductivity of electrons and ions limits their capacity and power density. The generation of NaFeP2O7 and NaFePO4 inhibits the diffusion of sodium ions and reduces reversible capacity and rate performance during the manufacturing process in synthesis methods. Herein, we report an entropy-driven approach to enhance the electronic conductivity and, concurrently, phase purity of NFPP as the superior cathode in sodium-ion batteries. This approach was realized via Ti ions substituting different ratios of Fe-occupied sites in the NFPP lattice (denoted as NTFPP-X, T is the Ti in the lattice, X is the ratio of Ti-substitution) with the configurational entropic increment of the lattice structures from 0.68 R to 0.79 R. Specifically, 5% Ti-substituted lattice (NTFPP-0.05) inducing entropic augmentation not only improves the electronic conductivity from 7.1 × 10–2 S/m to 8.6 × 10–2 S/m but also generates the pure-phase of NFPP (suppressing the impure phases of the NaFeP2O7 and NaFePO4) of the lattice structure, which is validated by a series of characterizations, including powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Benefiting from the Ti replacement in the lattice, the optimal NTFPP-0.05 composite shows a high first discharge capacity (118.5 mAh g–1 at 0.1 C), superior rate performance (70.5 mAh g–1 at 10 C), and excellent long cycling life (1200 cycles at 10 C with capacity retention of 86.9%). This research proposes a new entropy-driven approach to improve the electrochemical performance of NFPP and reports a low-cost, ultrastable, and high-rate cathode material of NTFPP-0.05 for SIBs.