am6b09355_si_001.pdf (1.64 MB)

Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel–Aluminum Layered Double Hydroxide Core–Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor

Download (1.64 MB)
journal contribution
posted on 12.12.2016, 00:00 by Shuxing Wu, Kwan San Hui, Kwun Nam Hui, Kwang Ho Kim
Achieving high energy density while retaining high power density is difficult in electrical double-layer capacitors and in pseudocapacitors considering the origin of different charge storage mechanisms. Rational structural design became an appealing strategy in circumventing these trade-offs between energy and power densities. A hybrid structure consists of chemically converted graphene-encapsulated carbon@nickel–aluminum layered double hydroxide core–shell spheres as spacers among graphene layers (G-CLS) used as an advanced electrode to achieve high energy density while retaining high power density for high-performance supercapacitors. The merits of the proposed architecture are as follows: (1) CLS act as spacers to avoid the close restacking of graphene; (2) highly conductive carbon sphere and graphene preserve the mechanical integrity and improve the electrical conductivity of LDHs hybrid. Thus, the proposed hybrid structure can simultaneously achieve high electrical double-layer capacitance and pseudocapacitance resulting in the overall highly active electrode. The G-CLS electrode exhibited high specific capacitance (1710.5 F g–1 at 1 A g–1) under three-electrode tests. An ASC fabricated using the G-CLS as positive electrode and reduced graphite oxide as negative electrode demonstrated remarkable electrochemical performance. The ASC device operated at 1.4 V and delivered a high energy density of 35.5 Wh kg–1 at a 670.7 W kg–1 power density at 1 A g–1 with an excellent rate capability as well as a robust long-term cycling stability of up to 10 000 cycles.

History

Exports