ic0005846_si_001.pdf (67.66 kB)

Electronic Spectral Studies of Molybdenyl Complexes. 2. MCD Spectroscopy of [MoOS4]- Centers

Download (67.66 kB)
journal contribution
posted on 13.01.2001, 00:00 by Jonathan McMaster, Michael D. Carducci, Yi-Shan Yang, Edward I. Solomon, John H. Enemark
Magnetic circular dichroism (MCD) and absorption spectroscopies have been used to probe the electronic structure of [PPh4][MoO(p-SC6H4X)4] (X = H, Cl, OMe) and [PPh4][MoO(edt)2] complexes (edt = ethane-1,2-dithiolate). The results of density functional calculations (DFT) on [MoO(SMe)4]- and [MoO(edt)2]- model complexes were used to provide a framework for the interpretation of the spectra. Our analysis shows that the lowest energy transitions in [MoVOS4] chromophores (S4 = sulfur donor ligand) result from S → Mo charge transfer transitions from S valence orbitals that lie close to the ligand field manifold. The energies of these transitions are strongly dependent on the orientation of the S lone-pair orbitals with respect to the Mo atom that is determined by the geometry of the ligand backbone. Thus, the lowest energy transition in the MCD spectrum of [PPh4][MoO(p-SC6H4X)4] (X = H) occurs at 14 800 cm-1, while that in [PPh4][MoO(edt)2] occurs at 11 900 cm-1. The identification of three bands in the absorption spectrum of [PPh4][MoO(edt)2] arising from LMCT from S pseudo-σ combinations to the singly occupied Mo 4d orbital in the xy plane suggests that there is considerable covalency in the ground-state electronic structures of [MoOS4] complexes. DFT calculations on [MoO(SMe)4]- reveal that the singly occupied HOMO is 53% Mo 4dxy and 35% S p for the equilibrium C4 geometry. For [MoO(edt)2]- the steric constraints imposed by the edt ligands result in the S π orbitals being of similar energy to the Mo 4d manifold. Significant S pseudo-σ and π donation may also weaken the Mo⋮O bond in [MoOS4] centers, a requirement for facile active site regeneration in the catalytic cycle of the DMSO reductases. The strong dependence of the energies of the bands in the absorption and MCD spectra of [PPh4][MoO(p-SC6H4X)4] (X = H, Cl, OMe) and [PPh4][MoO(edt)2] on the ligand geometry suggests that the structural features of the active sites of the DMSO reductases may result in an electronic structure that is optimized for facile oxygen atom transfer.

History

Exports