ae9b00098_si_001.pdf (674.64 kB)
Electron Transport Improvement of Perovskite Solar Cells via a ZIF-8-Derived Porous Carbon Skeleton
journal contribution
posted on 2019-03-20, 00:00 authored by Zhixin Zhang, Xinshu Luo, Bin Wang, Jingbo ZhangTo improve electron
transport rate of perovskite solar cells, a ZIF-8-derived porous carbon
skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting
glass as the electron transport skeleton of a perovskite solar cell.
Polyvinylpyrrolidone is added during the synthesis of ZIF-8 to reduce
the particle size of ZIF-8 and decrease the carbonization temperature
below 600 °C. The porous structure of ZIF-8 is mainly reserved
at the optimized carbonization temperature. Then, TiO2 nanoparticles
are deposited on the surface of a porous carbon skeleton to form an
electron transport layer of a perovskite solar cell with the structure
of FTO/ZIF-8-derived porous carbon layer/TiO2/perovskite/spiro-OMeTAD/Au.
Because of the good conductivity of the ZIF-8-derived porous carbon
skeleton, the photogenerated electron transport rate of the perovskite
solar cell is increased. At the same time, the porous structure of
the ZIF-8-derived carbon layer increases the contact area between
the perovskite layer and the TiO2 layer to favor separation
of photogenerated charges. Therefore, the light-to-electric conversion
efficiency of the CH3NH3PbI3 perovskite
solar cell is enhanced from 14.25% to 17.32%.
History
Usage metrics
Categories
Keywords
optimized carbonization temperatureelectron transport layerTiO 2 layerTiO 2 nanoparticlesZIF -8photogenerated electron transport rateelectron Transport ImprovementFTOCH 3 NH 3 PbI 3 perovskitecarbon skeletonlight-to-electric conversion efficiencycarbon skeleton layerelectron transport skeletonZIF -8-derivedZIF -8-Derived Porous Carbon Skeletonelectron transport ratePerovskite Solar CellsZIF -8-derived carbon layer increases