ic9b01216_si_001.pdf (519.2 kB)

Electron-Transfer Activity in a Cyanide-Bridged Fe42 Nanomagnet

Download (519.2 kB)
journal contribution
posted on 11.07.2019, 12:36 by Michael L. Baker, Shu-Qi Wu, Soonchul Kang, Satoshi Matsuzawa, Marie-Anne Arrio, Yasuo Narumi, Takumi Kihara, Tetsuya Nakamura, Yoshinori Kotani, Osamu Sato, Hiroyuki Nojiri
The ability to switch a molecule between different magnetic states is of considerable importance for the development of new molecular electronic devices. Desirable properties for such applications include a large-spin ground state with an electronic structure that can be controlled via external stimuli. Fe42 is a cyanide-bridged stellated cuboctahedron of mixed-valence Fe ions that exhibits an extraordinarily large S = 45 spin ground state. We have found that the spin ground state of Fe42 can be altered by controlling the humidity and temperature. Dehydration results in a 15 μB reduction of the saturation magnetization that can be partially recovered upon rehydration. The complementary use of UV–vis, IR, L2,3-edge X-ray absorption spectroscopy and X-ray magnetic circular dichroism is applied to uncover the mechanism for the observed dynamic behavior. It is identified that dehydration is concurrent with metal-to-metal electron transfer between Fe pairs via a cyanide π hybridization. Upon dehydration, electron transfer occurs from low-spin {FeII(Tp)­(CN)3} sites to high-spin FeIII centers. The observed reduction in magnetization upon dehydration of Fe42 is inconsistent with a ferrimagnetic ground state and is proposed to originate from a change in zero-field splitting at electron-reduced high-spin sites.