American Chemical Society
Browse

Electrocatalytic Hydrogenation of Pyridines and Other Nitrogen-Containing Aromatic Compounds

Download (3.03 MB)
journal contribution
posted on 2024-10-03, 17:05 authored by Naoki Shida, Yugo Shimizu, Akizumi Yonezawa, Juri Harada, Yuka Furutani, Yusuke Muto, Ryo Kurihara, Junko N. Kondo, Eisuke Sato, Koichi Mitsudo, Seiji Suga, Shoji Iguchi, Kazuhide Kamiya, Mahito Atobe
The production of cyclic amines, which are vital to the pharmaceutical industry, relies on energy-intensive thermochemical hydrogenation. Herein, we demonstrate the electrocatalytic hydrogenation of nitrogen-containing aromatic compounds, specifically pyridine, at ambient temperature and pressure via a membrane electrode assembly with an anion-exchange membrane. We synthesized piperidine using a carbon-supported rhodium catalyst, achieving a current density of 25 mA cm–2 and a current efficiency of 99% under a circular flow until 5 F mol–1. Quantitative conversion of pyridine into piperidine with 98% yield was observed after passing 9 F mol–1, corresponding to 65% of current efficiency. The reduction of Rh oxides on the catalyst surface was crucial for catalysis. The Rh(0) surface interacts moderately with piperidine, decreasing the energy required for the rate-determining desorption step. The proposed process is applicable to other nitrogen-containing aromatic compounds and could be efficiently scaled up. This method presents clear advantages over traditional high-temperature and high-pressure thermochemical catalytic processes.

History