nl1c02937_si_001.pdf (898.11 kB)
Download fileEffect of Nanoscale Ce0.8Gd0.2O2−δ Infiltrant and Steam Content on Ni–(Y2O3)0.08(ZrO2)0.92 Fuel Electrode Degradation during High-Temperature Electrolysis
journal contribution
posted on 2021-10-04, 18:07 authored by Beom-Kyeong Park, Dalton Cox, Scott A. BarnettStudies
of Ni–yttria-stabilized zirconia (YSZ) fuel electrode
degradation mechanisms in solid oxide electrolysis cells (SOECs) are
complicated by the different possible Ni–YSZ microstructures
and compositions, and the variations in the H2/H2O ratio encountered in an electrolysis stack. Here we describe a
life testing scheme aimed at providing survey results on degradation
as a function of the H2O–H2 composition,
with life tests carried out at five different steam contents from
90% to 10%. A Ni–YSZ-supported symmetric cell geometry is employed
both with and without infiltrated nanoscale gadolinia-doped ceria
(GDC). Impedance spectroscopy is utilized to observe changes in electrochemical
characteristics during the life test, and a transmission-line-based
equivalent circuit is used to model the data. Post-test electrode
microstructures were observed. The results suggest that the GDC infiltrant
reduces the electrode polarization resistance and provides more stable
electrode polarization over a range of conditions.
History
Usage metrics
Keywords
stable electrode polarizationelectrode polarization resistancebased equivalent circuittest electrode microstructurestemperature electrolysis studiesproviding survey resultslife tests carried92 sub8 sub2 subni – yttriafuel electrode degradationgdc infiltrant reducesni – yszlife testni –(results suggestgdc ).electrolysis stack– hsteam contentstabilized zirconiaratio encounteredobserve changesnanoscale ceimpedance spectroscopyelectrochemical characteristicsdoped ceria10 %.