bi0c00346_si_001.pdf (1.39 MB)
Download file

Effect of Molecular Crowding on the Stability of RNA G‑Quadruplexes with Various Numbers of Quartets and Lengths of Loops

Download (1.39 MB)
journal contribution
posted on 29.06.2020, 14:04 by Saki Matsumoto, Hisae Tateishi-Karimata, Shuntaro Takahashi, Tatsuya Ohyama, Naoki Sugimoto
G-Quadruplexes are noncanonical structures formed by guanine-rich regions of not only DNA but also RNA. RNA G-quadruplexes are widely present in the transcriptome as mRNAs and noncoding RNAs and take part in various essential functions in cells. Furthermore, stable RNA G-quadruplexes control the extent of biological functions, such as mRNA translation and antigen presentation. To understand and regulate the functions controlled by RNA G-quadruplexes in cellular environments, which are molecularly crowded, we would be required to investigate the stability of G-quadruplexes in molecular crowding. Here, we systematically investigated the thermodynamic stability of RNA G-quadruplexes with different numbers of G-quartets and lengths of loops. The molecular crowding conditions of polyethylene glycol with an average molecular weight of 200 (PEG200) were found to stabilize RNA G-quadruplexes with three and four G-quartets, while G-quadruplexes with two G-quartets did not exhibit any stabilization upon addition of PEG200. On the other hand, no difference in stabilization by PEG200 was observed among the G-quadruplexes with different loop lengths. Thermodynamic analysis of the RNA G-quadruplexes revealed more appropriate motifs for identifying G-quadruplex-forming sequences. The informatics analysis with new motifs demonstrated that the distributions of G-quadruplexes in human noncoding RNAs differed depending on the number of G-quartets. Therefore, RNA G-quadruplexes with different numbers of G-quartets may play different roles in response to environmental changes in cells.