jp5060843_si_001.pdf (4.03 MB)
Download file

Doping of Polyaniline with 6‑Cyano-2-naphthol

Download (4.03 MB)
journal contribution
posted on 13.11.2014, 00:00 authored by Debasree Das, Anindya Datta, Aliasgar Q. Contractor
The conductivity of polyaniline (PANI) is ascribed to its emeraldine salt (PANI-ES), which is formed by protonation of its emeraldine base (PANI-EB) by acids. Generally, mineral acids are used for this purpose, but the use of dopants and additives to maintain the required acidity provides an alternative method to the preparation of PANI-ES. The present work attempts to achieve the protonation by the use of a weak organic acid, namely, 6-cyano-2-naphthol (6CN2), which is generally used as a superphotoacid, as its excited state pKa is significantly smaller than its ground state pKa. The question here is if the protonation of the aniline moieties in PANI takes place and if it does, whether it takes place by dissociation of the ground state or the excited state of 6CN2. Room temperature conductance measurements were carried out to see the effect of doping. The formation of PANI-ES from PANI-EB has been monitored by UV–vis spectrophotometry. When a polar counterion is inserted into the polymer matrix, it changes the environment of the nearby chains by introducing defects, reorganization of charges as a result of interaction with the polymer. Morphological investigation was done using optical microscopy, field emission gun scanning electron microscopy (FEGSEM), and field emission gun transmission electron microscopy FEGTEM. The influence of 6CN2 on the crystallinity of the polymer was determined by X-ray diffraction (XRD).

History