American Chemical Society
Browse
- No file added yet -

Doping-Free High-Performance Photovoltaic Effect in a WSe2 Lateral p‑n Homojunction Formed by Contact Engineering

Download (1.39 MB)
Version 2 2023-07-14, 15:06
Version 1 2023-07-14, 02:43
journal contribution
posted on 2023-07-14, 15:06 authored by Hai Yen Le Thi, Tien Dat Ngo, Nhat Anh Nguyen Phan, Hoseong Shin, Inayat Uddin, A. Venkatesan, Chi-Te Liang, Nobuyuki Aoki, Won Jong Yoo, Kenji Watanabe, Takashi Taniguchi, Gil-Ho Kim
Two-dimensional transition metal dichalcogenides (TMDs) are promising materials for semiconductor nanodevices owing to their flexibility, transparency, and appropriate band gaps. A variety of optoelectronic and electronic devices based on TMDs p-n diodes have been extensively investigated due to their unique advantages. However, improving their performance is challenging for commercial applications. In this study, we propose a facile and doping-free approach based on the contact engineering of a few-layer tungsten di-selenide to form a lateral p-n homojunction photovoltaic. By combining surface and edge contacts for p-n diode fabrication, the photovoltaic effect is achieved with a high fill factor of ≈0.64, a power conversion efficiency of up to ≈4.5%, and the highest external quantum efficiency with a value of ≈67.6%. The photoresponsivity reaches 283 mA/W, indicating excellent photodiode performance. These results demonstrate that our technique has great potential for application in next-generation optoelectronic devices.

History