ac049022k_si_001.pdf (202.93 kB)
Download file

Dispersion of Solute by Electrokinetic Flow through Post Arrays and Wavy-Walled Channels

Download (202.93 kB)
journal contribution
posted on 15.02.2005, 00:00 by J. J. Kirchner, E. F. Hasselbrink
In this work, we simulate electrokinetically driven transport of unretained solute bands in a variety of two-dimensional spatially periodic geometries (post arrays as well as sinuous/varicose channels), in the thin Debye layer limit. Potential flow fields are calculated using either an inverse method or a Schwarz−Christoffel transform, and transport is modeled using a Monte Carlo method in the transformed plane. In this way, spurious “numerical diffusion” transverse to streamlines is completely eliminated, and streamwise numerical diffusion is reduced to arbitrary precision. Late-time longitudinal dispersion coefficients are calculated for Peclet numbers from 0.1 to 3162. In most geometries, a Taylor−Aris-like scaling law for the dispersion coefficient DL/DL0 = 1 + Pe2/α underpredicts dispersion when Pe O1/2) (here DL0 is the effective axial diffusion coefficient in the periodic geometry). A two-parameter correlation widely used in the porous media literature, DL/DL0 = 1 + Pen/α, agrees slightly better, but much better agreement can be obtained using a new quadratic form:  DL/DL0 = 1 + Pe1 + Pe22. A quasi-universal relationship for streamwise dispersion is offered that predicts 96% of the simulation data to within a factor of 2 in all geometries studied. Comparison with previous work shows that in circular post arrays, the dispersion coefficient for electrokinetic flow is a factor of 3−10 less (depending on Pe and relative post size) than for pressure-driven flow.