American Chemical Society
ma800289u_si_001.pdf (1.44 MB)

Direct Synthesis of Well-Defined Heterotelechelic Polymers for Bioconjugations

Download (1.44 MB)
journal contribution
posted on 2008-08-12, 00:00 authored by Cyrille Boyer, Jingquan Liu, Volga Bulmus, Thomas P. Davis, Christopher Barner-Kowollik, Martina H. Stenzel
Direct synthesis of well-defined heterotelechelic polymers having functional groups allowing the chemoselective bioconjugations would be desirable to enhance the versatility of polymers for bioconjugations and bio-related applications. Considering this, well-defined α-azide, ω-dithiopyridine polymers were synthesized in one step via the reversible addition−fragmentation chain transfer (RAFT) polymerization. The telechelic functionality (i.e., mole ratio of the ω-dithiopyridine to the α-azide end group) of polymers was above 0.90, indicating the efficient generation of well-defined heterotelechelic polymers. The heterotelechelic functionality for chemoselective bioconjugations was tested by reacting α-azide, ω-dithiopyridine poly(NIPAAm) with model biomolecules, i.e., biotin/avidin, glutathione, and bovine serum albumin, via click and thiol−disulfide exchange chemistries. Near-stoichiometric conjugation with biomolecules indicated high functionality of the polymer end groups.