American Chemical Society
Browse
ac0c03259_si_001.pdf (24.06 MB)

Direct, Isomer-Specific Quantitation of Polycyclic Aromatic Hydrocarbons in Soils Using Membrane Introduction Mass Spectrometry and Chemical Ionization

Download (24.06 MB)
journal contribution
posted on 2020-10-20, 04:44 authored by Gregory W. Vandergrift, Erik T. Krogh, Chris G. Gill
Polycyclic aromatic hydrocarbons (PAHs) are routinely screened for in soils, where quantitation of structural isomers is critical due to varying toxicity within PAH isomer classes. While chromatographic methods provide isomer resolution, such strategies are cost and time intensive. To address these challenges, we present condensed phase membrane introduction mass spectrometry using liquid electron ionization/chemical ionization (CP-MIMS-LEI/CI) as a direct mass spectrometry technique that provides rapid, quantitative results for PAH isomer measurements in soil samples. A methanol acceptor phase is flowed through a probe-mounted polydimethylsiloxane hollow fiber membrane directly immersed into a dichloromethane/soil slurry. PAHs and dichloromethane co-permeate the membrane into the acceptor solvent, whereas particulates and charged matrix components remain in the sample. A nanoflow of the membrane permeate is then directly infused into a LEI/CI interfaced triple quadrupole mass spectrometer. Diagnostic PAH adduct ions were formed at either M + 45 ([M + CH2Cl + CH3OH–HCl]+) or M + 47 ([M + CHCl2–HCl]+). This allowed the development of specific MS/MS transitions for individual PAH isomers. These transitions were subsequently used for the direct analyses of PAHs in real soils where CP-MIMS-LEI/CI was shown to be rapid (15 soil samples/h) and sensitive (ng/g level detection limits). CP-MIMS-LEI/CI results compared well to those obtained using GC–MS (average percent difference of −9% across 9 PAHs in 8 soil samples), presenting a compelling argument for direct, quantitative screening of PAHs in soils by CP-MIMS-LEI/CI, particularly given the simple workflow and short analytical duty cycle.

History