American Chemical Society
bm300006r_si_001.pdf (292.72 kB)

Diepoxide-Triggered Conformational Transition of Silk Fibroin: Formation of Hydrogels

Download (292.72 kB)
journal contribution
posted on 2012-04-09, 00:00 authored by Ilknur Karakutuk, Fatih Ak, Oguz Okay
Silk fibroin hydrogels with tunable properties could be obtained from aqueous fibroin solutions (4.2 w/v %) in a short period of time. This was achieved by the addition of ethylene glycol diglycidyl ether (EGDE) into the reaction solution. Introduction of EGDE cross-links between the fibroin molecules decreases the mobility of the chains, which triggers the conformational transition from random-coil to β-sheet structure and hence fibroin gelation. Dynamic rheological measurements conducted at 50 °C show the formation of strong to weak hydrogels depending on the pH of the reaction solution. Although EGDE attacks the amino groups of fibroin and forms interstrand cross-links, β-sheets acting as physical cross-links dominate the elasticity of the hydrogels. Mechanical response of low-modulus fibroin hydrogels formed above pH 9.7 is highly nonlinear with strong strain hardening behavior (700%) arising from the alignment of the crystallizable amino acid segments.