jo0486488_si_001.pdf (128.07 kB)
Download file

Dicyclobuta[de,ij]naphthalene and Dicyclopenta[cd,gh]pentalene:  A Theoretical Study

Download (128.07 kB)
journal contribution
posted on 12.11.2004, 00:00 by Maximilian Macaluso, Carol A. Parish, Roald Hoffmann, Lawrence T. Scott
The structures, energetics, and aromatic character of dicyclobuta[de,ij]naphthalene, 1, dicyclopenta[cd,gh]pentalene, 2, dihydrodicyclobuta[de,ij]naphthalene, 3, and dihydrocyclopenta[cd,gh]pentalene, 4, have been examined at the B3LYP/6-311++G**//B3LYP/6-31G* level of theory. All molecules are bowl-shaped, and the pentalene isomers, 2 and 4, are most stable. A comparison with other C12H6 and C12H8 isomers indicates that 2 is ∼25 kcal/mol less stable than 1,5,9-tridehydro[12]annulene and 4 is ∼100 kcal/mol higher in energy than acenaphthylene, both of which are synthetically accessible. The transition state structure for bowl-to-bowl inversion of 1 is planar (D2h) and lies 30.9 kcal/mol higher in energy than the ground state; the transition state for inversion of 2 is C2h and lies 46.6 kcal/mol higher in energy. Symmetry considerations, bond length alternations, and NICS values (a magnetic criterion) all indicate that the ground states of 1, 3, and 4 are very aromatic; however, HOMA values (a measure of bond delocalization) indicate that 3S and 4S are aromatic but that 1S is less so. NICS values for the ground state of 2 strongly indicate aromaticity; however, bond localization, symmetry, and HOMA values argue otherwise.