ac8b00757_si_001.pdf (1.13 MB)
Download fileDevelopment of a High-Resolution Laser Absorption Spectroscopy Method with Application to the Determination of Absolute Concentration of Gaseous Elemental Mercury in Air
journal contribution
posted on 2018-04-30, 00:00 authored by Abneesh Srivastava, Joseph T. HodgesIsotope
dilution-cold-vapor-inductively coupled plasma mass spectrometry
(ID-CV-ICPMS) has become the primary standard for measurement of gaseous
elemental mercury (GEM) mass concentration. However, quantitative
mass spectrometry is challenging for several reasons including (1)
the need for isotopic spiking with a standard reference material,
(2) the requirement for bias-free passive sampling protocols, (3)
the need for stable mass spectrometry interface design, and (4) the
time and cost involved for gas sampling, sample processing, and instrument
calibration. Here, we introduce a high-resolution laser absorption
spectroscopy method that eliminates the need for sample-specific calibration
standards or detailed analysis of sample treatment losses. This technique
involves a tunable, single-frequency laser absorption spectrometer
that measures isotopically resolved spectra of elemental mercury (Hg)
spectra of 6 1S0 ← 6 3P1 intercombination transition near λ = 253.7 nm. Measured
spectra are accurately modeled from first-principles using the Beer–Lambert
law and Voigt line profiles combined with literature values for line
positions, line shape parameters, and the spontaneous emission Einstein
coefficient to obtain GEM mass concentration values. We present application
of this method for the measurement of the equilibrium concentration
of mercury vapor near room temperature. Three closed systems are considered:
two-phase mixtures of liquid Hg and its vapor and binary two-phase
mixtures of Hg–air and Hg–N2 near atmospheric
pressure. Within the experimental relative standard uncertainty, 0.9–1.5%
congruent values of the equilibrium Hg vapor concentration are obtained
for the Hg-only, Hg–air, Hg–N2 systems, in
confirmation with thermodynamic predictions. We also discuss detection
limits and the potential of the present technique to serve as an absolute
primary standard for measurements of gas-phase mercury concentration
and isotopic composition.
History
Usage metrics
Categories
Keywords
mass spectrometry interface designsample-specific calibration standardsmeasurementemission Einstein coefficientsingle-frequency laser absorption spectrometertwo-phase mixturesAir Isotope dilution-cold-vapor-inductivelygas-phase mercury concentrationplasma mass spectrometryequilibrium Hg vapor concentrationline shape parametersVoigt line profileslaser absorption spectroscopy methodGEM mass concentration valuessample treatment lossesHigh-Resolution Laser Absorption Spectroscopy MethodID-CV-ICPMSspectra