American Chemical Society
Browse
ac0710329_si_002.pdf (100.92 kB)

Detection of the Recombinant Proteins in Single Transgenic Microbial Cell Using Laser Tweezers and Raman Spectroscopy

Download (100.92 kB)
journal contribution
posted on 2007-12-15, 00:00 authored by Changan Xie, Nhu Nguyen, Yong Zhu, Yong-qing Li
Laser tweezers Raman spectroscopy (LTRS) has been used for the rapid detection of recombinant somatolactin protein produced in single Escherichia coli bacteria and Pichia pastoris yeast cell in the current study. A cDNA sequence encoding mature peptide of zebrafish somatolactin β was inserted into two different expression vectors and transfected into E. coli or P. pastoris yeast cells. We measured Raman spectra of single E. coli cells at different culture times following the induction with isopropyl β-d-1-thiogalactopyranoside, from which the amount of the generated somatolactin proteins was obtained by the projection of the entire cell's spectrum onto the spectrum of the pure somatolactin proteins or the dot product between these two spectral vectors. We found that the intensity of the somatolactin β protein-associated spectra from single E. coli cells increased as the function of the culture time, which correlates with the accumulation of recombinant proteins inside the cells. This spectral observation was supported by evidence obtained by conventional methods of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analyses. The increased intensities of recombinant protein-associated Raman bands were also observed in another expression system, P. pastoris yeast cells. These findings demonstrate that the LTRS is a useful method for rapid sensing of recombination production in single host microorganism in vivo.

History