American Chemical Society
tg4c00011_si_001.pdf (1.22 MB)

Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker

Download (1.22 MB)
journal contribution
posted on 2024-05-08, 13:09 authored by Jeffrey Tao, Hongquan Zhang, Michael Weinfeld, X. Chris Le
DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.