ab0c01363_si_001.pdf (442.53 kB)

Design of Dissolvable Microneedles for Delivery of a Pfs47-Based Malaria Transmission-Blocking Vaccine

Download (442.53 kB)
journal contribution
posted on 22.02.2021, 16:33 by Lampouguin Yenkoidiok-Douti, Carolina Barillas-Mury, Christopher M. Jewell
The development of effective malaria vaccines remains a global health priority. In addition to an effective vaccine, there is urgent demand for effective delivery technologies that can be easily deployed. The need for effective vaccine delivery tools is particularly pertinent in resource-poor settings where access to healthcare is limited. Microneedles are micron-scale structures that offer distinct advantages for vaccine delivery by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. Here, we developed and characterized a candidate malaria vaccine loaded and deployed using dissolvable microneedle arrays. Of note, a newly indicated human-relevant antigen was employed, Plasmodium falciparum surface protein P47. P47 and a potent toll-like receptor (TLR9) agonist vaccine adjuvant, CpG, were fabricated into microneedles using a gelatin polymer. Protein binding, ELISA, and fluorescence analysis confirmed the molecular structure, and the function of the P47 antigen and CpG was maintained after fabrication, storage, and release from microneedles. In cell culture, the cargo released from the microneedle arrays triggered TLR9 signaling and activated primary dendritic cells at levels similar to native, unincorporated vaccine components. Together, these studies demonstrate the potential of microneedles as an easily deployable strategy for a P47-based malaria vaccine.

History