jp0453764_si_001.pdf (18.33 kB)
Download fileDensity Functional Study on the Reaction Mechanism of Proton Transfer in 2-Pyridone: Effect of Hydration and Self-Association
journal contribution
posted on 2005-02-24, 00:00 authored by Aiping Fu, Hongliang Li, Dongmei Du, Zhengyu ZhouThe proton-transfer mechanism in the isolated, mono, dehydrated forms and dimers of 2-pyridone and the
effect of hydration or self-assistance on the transition state structures corresponding to proton transfer from
the keto form to the enol form have been investigated using B3LYP and BH-LYP hybrid density functional
methods at the 6-311++G (2d, 2p) basis set level. The barrier heights for both H2O-assisted and self-assisted
reactions are significantly lower than that of the bare tautomerization reaction from 2-pyridone to
2-hydroxypyridine, implying the importance of the superior catalytic effect of H2O and (H2O)2 and the important
role of 2-pyridone itself for the intramolecular proton transfer. Long-range solvent effects have also been
taken into account by using the continuum model (Onsager model and polarizable continuum model (PCM))
of water. The tautomerization energies and the potential energy barriers are increased both for the water-assisted and for the self-assisted reaction because of the bulk solvent, which imply that the tautomerization
of PY becomes less favorable in the polar solvent.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
barrier heightsintramolecular proton transferDensity Functional Studycontinuum modelproton transferPCMPYtautomerization reactionenol formtransition state structuresH 2 OProton Transferenergy barrierspolarizable continuum modeltautomerization energiesketo formOnsager modelB 3LYPpyridone2 pReaction Mechanism