ef0c03896_si_001.pdf (1.06 MB)
Download file

Defect-Free MoS2‑Flakes/Amorphous-Carbon Hybrid as an Advanced Anode for Lithium-Ion Batteries

Download (1.06 MB)
journal contribution
posted on 29.01.2021, 16:06 by Duc Anh Dinh, Tuan Loi Nguyen, Tran Viet Cuong, Kwan San Hui, Trung Hieu Bui, Shuxing Wu, Kwun Nam Hui
Molybdenum disulfide (MoS2) is a promising alternative for the anode of Li-ion batteries because of its high theoretical capacity and layered structure for rapid ion transport. However, the issues of low electrical conductivity, high volume change, and complicated synthesis are limiting the practical application of MoS2 as the anode in Li-ion batteries. To overcome these issues, we propose the synthesis of MoS2 flakes/amorphous carbon hybrids (MoS2/C) for the application of the anode. The MoS2 flakes are obtained by liquid-phase exfoliation of bulk MoS2 in 2-propanol. Then, MoS2/C hybrids are produced by thermal decomposition of poly­(acrylic acid) coated on MoS2. The hybrids are tested as anode-active materials in a half-cell configuration. The electrochemical tests show that the electrode, with the optimized carbon content, exhibits a reversible specific capacity of ∼521 mAh g–1 at 100 mA g–1 after 100 cycles, with a coulombic efficiency approaching 100%. The remarkable performance of the MoS2/C hybrids is attributed to the carbon network acting as a buffer layer to alleviate the volume change of MoS2. This study demonstrates an approach to enhance the electrochemical performance of MoS2/C hybrids for Li+ storage applications.