American Chemical Society
Browse

Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation

Download (200.65 kB)
journal contribution
posted on 2019-08-15, 14:06 authored by Xutong Li, Zhaojun Li, Xiaolong Wu, Zhaoping Xiong, Tianbiao Yang, Zunyun Fu, Xiaohong Liu, Xiaoqin Tan, Feisheng Zhong, Xiaozhe Wan, Dingyan Wang, Xiaoyu Ding, Ruirui Yang, Hui Hou, Chunpu Li, Hong Liu, Kaixian Chen, Hualiang Jiang, Mingyue Zheng
The kinome-wide virtual profiling of small molecules with high-dimensional structure–activity data is a challenging task in drug discovery. Here, we present a virtual profiling model against a panel of 391 kinases based on large-scale bioactivity data and the multitask deep neural network algorithm. The obtained model yields excellent internal prediction capability with an auROC of 0.90 and consistently outperforms conventional single-task models on external tests, especially for kinases with insufficient activity data. Moreover, more rigorous experimental validations including 1410 kinase-compound pairs showed a high-quality average auROC of 0.75 and confirmed many novel predicted “off-target” activities. Given the verified generalizability, the model was further applied to various scenarios for depicting the kinome-wide selectivity and the association with certain diseases. Overall, the computational model enables us to create a comprehensive kinome interaction network for designing novel chemical modulators or drug repositioning and is of practical value for exploring previously less studied kinases.

History