posted on 2021-05-03, 23:47authored byBart Van Puyvelde, Katleen Van Uytfanghe, Olivier Tytgat, Laurence Van Oudenhove, Ralf Gabriels, Robbin Bouwmeester, Simon Daled, Tim Van Den Bossche, Pathmanaban Ramasamy, Sigrid Verhelst, Laura De Clerck, Laura Corveleyn, Sander Willems, Nathan Debunne, Evelien Wynendaele, Bart De Spiegeleer, Peter Judak, Kris Roels, Laurie De Wilde, Peter Van Eenoo, Tim Reyns, Marc Cherlet, Emmie Dumont, Griet Debyser, Ruben t’Kindt, Koen Sandra, Surya Gupta, Nicolas Drouin, Amy Harms, Thomas Hankemeier, Donald J. L. Jones, Pankaj Gupta, Dan Lane, Catherine S. Lane, Said El Ouadi, Jean-Baptiste Vincendet, Nick Morrice, Stuart Oehrle, Nikunj Tanna, Steve Silvester, Sally Hannam, Florian C. Sigloch, Andrea Bhangu-Uhlmann, Jan Claereboudt, N. Leigh Anderson, Morteza Razavi, Sven Degroeve, Lize Cuypers, Christophe Stove, Katrien Lagrou, Geert A. Martens, Dieter Deforce, Lennart Martens, Johannes P. C. Vissers, Maarten Dhaenens
Rising population
density and global mobility are among the reasons
why pathogens such as SARS-CoV-2, the virus that causes COVID-19,
spread so rapidly across the globe. The policy response to such pandemics
will always have to include accurate monitoring of the spread, as
this provides one of the few alternatives to total lockdown. However,
COVID-19 diagnosis is currently performed almost exclusively by reverse
transcription polymerase chain reaction (RT-PCR). Although this is
efficient, automatable, and acceptably cheap, reliance on one type
of technology comes with serious caveats, as illustrated by recurring
reagent and test shortages. We therefore developed an alternative
diagnostic test that detects proteolytically digested SARS-CoV-2 proteins
using mass spectrometry (MS). We established the Cov-MS consortium,
consisting of 15 academic laboratories and several industrial partners
to increase applicability, accessibility, sensitivity, and robustness
of this kind of SARS-CoV-2 detection. This, in turn, gave rise to
the Cov-MS Digital Incubator that allows other laboratories to join
the effort, navigate, and share their optimizations and translate
the assay into their clinic. As this test relies on viral proteins
instead of RNA, it provides an orthogonal and complementary approach
to RT-PCR using other reagents that are relatively inexpensive and
widely available, as well as orthogonally skilled personnel and different
instruments. Data are available via ProteomeXchange with identifier
PXD022550.