American Chemical Society
Browse

Core–Shell Nanoparticles Based on Pullulan and Poly(β-amino) Ester for Hepatoma-Targeted Codelivery of Gene and Chemotherapy Agent

Download (271.93 kB)
journal contribution
posted on 2014-11-12, 00:00 authored by Yuanyuan Liu, Yan Wang, Cong Zhang, Ping Zhou, Yang Liu, Tong An, Duxin Sun, Ning Zhang, Yinsong Wang
This study designs a novel nanoparticle system with core–shell structure based on pullulan and poly­(β-amino) ester (PBAE) for the hepatoma-targeted codelivery of gene and chemotherapy agent. Plasmid DNA expressing green fluorescent protein (pEGFP), as a model gene, was fully condensed with cationic PBAE to form the inner core of PBAE/pEGFP polycomplex. Methotrexate (MTX), as a model chemotherapy agent, was conjugated to pullulan by ester bond to synthesize polymeric prodrug of MTX-PL. MTX-PL was then adsorbed on the surface of PBAE/pEGFP polycomplex to form MTX-PL/PBAE/pEGFP nanoparticles with a classic core–shell structure. MTX-PL was also used as a hepatoma targeting moiety, because of its specific binding affinity for asialoglycoprotein receptor (ASGPR) overexpressed by human hepatoma HepG2 cells. MTX-PL/PBAE/pEGFP nanoparticles realized the efficient transfection of pEGFP in HepG2 cells and exhibited significant inhibitory effect on the cell proliferation. In HepG2 tumor-bearing nude mice, MTX-PL/PBAE/pEGFP nanoparticles were mainly distributed in the tumor after 24 h postintravenous injection. Altogether, this novel codelivery system with a strong hepatoma-targeting property achieved simultaneous delivery of gene and chemotherapy agent into tumor at both cellular and animal levels.

History